Abstract

An FeMo-alloy-doped β-SiAlON (FeMo/β-SiAlON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, AlN, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investigated. Some properties of the composite, including its bending strength at 700°C and after oxidization at 700°C for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion resistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiAlON composite exhibits strong potential for application to molten aluminum environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.