Abstract
AbstractStructurally modified poly(vinyl alcohol) (PVA) was prepared as novel thermally sensitive polymers by partially acetalyzing and/or ionizing the commercially available PVA. Their aqueous solutions experience completely reversible polymer aggregation and dissolution above and below the lower critical solution temperature (LCST), respectively. The LCST of a partially acetalyzed PVA (APVA) can be readily controlled by the degree of acetalysis or the molecular weight of the starting PVA. Introduction of a small amount of cationic group onto the APVA backbone increases the LCST obviously, while the LCST is highly sensitive to NaCl concentration. Then APVA and cationic APVA multilayers are assembled on rayon to make a thermal responsive fiber. The atomic force microscopy (AFM) images of the surface reveal the increment of roughness stimulated by temperature. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.