Abstract
Self-consistent numerical simulations of a low-pressure inductive RF discharge have been carried out. It is shown that, on the one hand, the plasma parameters are determined by the RF power absorbed in the plasma and, on the other, they themselves govern the power absorption. This results in a nonmonotonic dependence of the plasma parameters on the magnetic field, as well as in discharge disruptions, similar to those observed experimentally in such discharges. An inductive RF discharge with a capacitive component is simulated. The experimentally observed characteristic properties of the discharges are explained based on the regular features of the absorption of RF power in the plasma. Traditional inductive plasma sources (both without and with a magnetic field) are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.