Abstract

An equiatomic CoCrFeNiMn high-entropy alloy was prepared by induction melting and a progressive combination of mechanical alloying and compaction via spark plasma sintering done at temperatures of 800 °C and 1000 °C. The chosen methods of preparation had a significant impact on the microstructure and mechanical properties of the alloy. In comparison, the as-cast alloy had a much coarser microstructure while simultaneously obtaining inferior mechanical properties compared to those of the 8-h mechanically alloyed and spark plasma sintered alloy compacted at 1000 °C, which achieved a hardness of 424 ± 7 HV, and the alloy compacted at 800 °C showed a lower but still highly comparable hardness of 352 ± 12 HV. Both alloys showed good thermal stability, as expressed by almost negligible hardness changes during 100 h of annealing at temperatures of 400 °C and 600 °C. The investigated alloys also showed their superiority during compressive stress-strain tests at ambient and elevated temperatures of 400 °C and 600 °C. At ambient temperature, the highest compressive yield strength of 1534 MPa was observed for the sample compacted at 800 °C. As the temperature of the compressive test increased, the investigated alloys reduced their compressive yield strengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.