Abstract

In this paper, a local non-equilibrium diffuse interface model is introduced for describing solid–liquid dissolution problems. The model is developed based on the analysis of Golfier et al. (J Fluid Mech 457:213–254, 2002) upon the dissolution of a porous domain, with the additional requirement that density variations with the mass fraction are taken into account. The control equations are generated by the upscaling of the balance equations for a solid–liquid dissolution using a volume averaging theory. This results into a diffuse interface model (DIM) that does not require an explicit treatment of the dissolving interface, e.g., the use of arbitrary Lagrangian–Eulerian (ALE) methods, for instance. Test cases were performed to study the features and influences of the effective coefficients inside the DIM. In particular, an optimum expression for the solid–liquid exchange coefficient is obtained from a comparison with the referenced solution by ALE simulations. Finally, a Ra–Pe diagram illustrates the interaction of natural convection and forced convection in the dissolution problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.