Abstract

We have identified eight mutations that define at least five terminal differentiation genes (ram genes) whose products are required during the extension of the male-specific ray sensilla in Caenorhabditis elegans. ram gene mutations result in morphological abnormalities in the sensory rays but do not appear to interfere with ray functions. A similar ray morphology phenotype was observed in males harboring mutations in three previously defined genes, dpy-11, dpy-18 and sqt-1, that also affect body shape. One of these genes, sqt-1, is known to encode a collagen. Mutations in different ram genes failed to complement, from which we infer that their gene products functionally interact. For one ram gene, failure to complement was shown to result from haploinsufficiency. Intergenic noncomplementation did not extend to the body morphology genes. The temperature-sensitive periods of both ram and body morphology mutations corresponded to the period of development in which ray extension occurs. We propose that ram gene products act together in a critical interaction between the rays and the cuticle required for wild-type ray morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.