Abstract

Glucose dehydrogenase, a membrane bound enzyme oxidizing glucose to gluconic acid in the periplasmic space of Gram-negative bacteria plays a key role in mineral phosphate solubilization and is also an industrially important enzyme, being used as a glucose biosensor. A chimeric glucose dehydrogenase (ES chimera) encoding the N-terminal transmembrane domain from Escherichia coli and the C-terminal periplasmic domain from Serratia marcescens was constructed and the expression was studied on MacConkey glucose medium. The phosphate solubilizing ability of the chimeric GDH was also evaluated, substantiating the role of GDH in mineral phosphate solubilization (MPS). Four mutants of ES chimeric GDH were generated by site directed mutagenesis and the enzyme properties studied. Though the substrate affinity was unaltered for E742K and Y771M, the affinity of H775A and EYH/KMA to glucose and galactose decreased marginally and the affinity to maltose increased. Though Y771M showed a decreased GDH activity there was an increase in the heat tolerance. All the mutants showed an increase in the EDTA tolerance. The triple mutant EYH/KMA showed improved heat and EDTA tolerance and also an increase in affinity to maltose over the ES chimeric GDH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.