Abstract
Abstract Dental implant treatment requires an available bone volume in the implantation site to ensure the implant’s mechanical stability. When the bone volume is insufficient, one must resort to surgical means such as guided bone regeneration (GBR). In GBR surgery, bone grafts and membranes are used. The objective of this work is to manufacture and characterize the in vitro and in vivo properties of resorbable collagen type I membranes (Green Membrane®) for GBR. Membrane surface morphology was characterized by SEM and roughness was measured using an interferometric noncontact 3D system. In vivo skin sensitization and toxicity tests have been performed on Wistar rats. Bone defects were prepared in 24 adult male rats, filled with biomaterials (Blue Bone® and Bio Oss®) and covered with collagen membranes to maintain the mechanical stability of the site for bone regeneration. The incisions were closed with simple stitches; and 60 days after the surgery, the animals were euthanized. Results showed that the analyzed membrane was homogeneous, with collagen fiber webs and open pores. It had no sign of cytotoxicity and the cells at the insertion site showed no bone morphological changes. There was no tissue reaction and no statistical difference between Blue Bone® and Bio Oss® groups. The proposed membrane has no cytotoxicity and displays a biocompatibility profile that makes it suitable for GBR.
Highlights
In dentistry, membranes are used for guided bone regeneration (GBR) and guided tissue regeneration (GTR)
The use of collagen type I membranes in GBR helps to create the most surgery favorable conditions so that the cells involved in the process can perform their function without unwanted tissue invagination or the action of an external agent that
The results showed that the simultaneous use of collagen membranes and nonresorbable membranes in GBR procedures do not improve the bone quality of the rat femur
Summary
Membranes are used for guided bone regeneration (GBR) and guided tissue regeneration (GTR). The purpose of GBR is to restore large bone defects in orthopedic and maxillofacial surgery. In these surgery procedures, membranes play an important role. The membrane used together with a bone graft provides mechanical stability to a biomaterial inside the defect site. The success of GBR depends on the mechanisms involved in the proliferation and differentiation of mesenchymal cells (MSCs) in the surgery site. Collagen type I has the function of improving cell growth and migration [4]. The use of collagen type I membranes in GBR helps to create the most surgery favorable conditions so that the cells involved in the process can perform their function without unwanted tissue invagination or the action of an external agent that
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.