Abstract

Properties of an on-chip photovoltaic nanodevice are demonstrated. The dyes comprise green florescent proteins (GFP). Dependence of recently reported zero external potential bias (ZEPB) photocurrent (I) on temperature, power, and wavelength (λ) is shown. Correlation between UV−vis spectrum of the GFP and the ZEPB I(λ) of the device is reported. The temperature dependence suggests the ZEPB photocurrent to reflect a liquid crystal type ordering where the current declines monotonically with increasing temperature. The influence of an external bias on the photocurrent is demonstrated. The resulting light-induced current is analyzed in terms of resistive and quantum mechanical contributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.