Abstract
AbstractAging mechanisms have been investigated on polyethylene terephthalate (PET) fibres extracted from various vascular prostheses in order to identify the different modifications of the material's degradation. NMR spectroscopy provides a comprehensive view of chemical structures of macromolecules. Examination of a series of PET fibres showed significant chemical differences between the virgin prostheses and the explants, especially for diethylene glycol (DEG) and cyclic oligomeric groups. These analyses revealed that PET failures in vascular prostheses are susceptible to hydrolysis during in vivo stay. We also extended this 1H NMR technique to determine the hydroxyl and carboxyl end‐group concentrations. In order to validate the 1H NMR results, complementary techniques — chemical titration and classical viscosimetry — were used. The obtained results showed an increase in end‐group concentrations and a decrease of the viscosity averaged macromolecular weight (Mν) for the explants. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.