Abstract

Lignin has been proved to be a promising precursor for producing carbon foam. The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors, and the conversion parameters can clearly affect the properties of the derived products. Therefore, this study systematically investigated the effects of key carbonization parameters on the properties of the resulting carbon foam materials. The findings demonstrate that the performance of the self-shaping lignin-derived carbon foam is simultaneously influenced by the factors that carbonization temperature, heating rate, and carbonization duration. Specifically, the carbonization temperature and carbonization duration have a significant impact on the mechanical performance, where higher temperatures and long carbonization time improve compressive strength and specific strength. Moreover, the data revealed that elevated temperatures, rapid heating rates, and shortened carbonization periods collectively promoted the development of higher porosities and larger pore diameters within the carbon foam structure. Conversely, lower carbonization temperatures, slower heating rates, and extended carbonization durations facilitated the formation of microporous in the carbon foam. This study provides a scientific foundation for optimizing the production of lignin-derived carbon foam with tailored properties and performance characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.