Abstract

Self-Compacting concrete is a concrete that is able to flow and consolidate under its own weight, completely fill the formwork even in the presence of dense reinforcement, whilst maintaining homogeneity and without the need for any additional compaction. Self-Compacting concrete is achieved by using high proportions of powder content and super?plasticizers. Due to this, pronounced thermal cracking is anticipated. Thermal cracking in concrete structures is of great concern. The objective of this research is to carry out experiments and investigate fresh and hardened properties of SCC developed using a blend of ordinary Portland cement and ground granulated blast furnace slag (GGBFS), to evaluate the applicability of Japan Concrete Institute (JCI) model?equations and?to find out any similarities and differences between Self-?Compacting concrete and normal vibrated concrete—Portland blast furnace slag concrete class B. Thermal stress analysis of the proposed Self-Compacting concrete and normal vibrated concretes were investigated by simulation using 3D FEM analysis. To carry out these objectives, concrete properties such as autogenous shrinkage, adiabatic temperature rise, drying shrinkage, modulus of elasticity, splitting tensile strength and compressive strength were determined through experiments. From experimental results, it was observed that except for the fresh properties, the hardened properties of Self-Compacting exhibit similar characteristics to those of normal vibrated concrete at almost similar water to binder ratios. It was also established that Self-Compacting concrete at W/B of 32% with a 50% replacement of ground granulated blast furnace slag has better thermal cracking resistance than SCC with 30% GGBFS replacement. It is also found that provided the relevant constants are derived from experimental data, JCI model equations can be applied successfully to evaluate hardened properties of Self-Compacting concrete.

Highlights

  • The concept of Self-Compacting concrete was proposed by Professor Hajime Okamura of Kochi University of Technology, Japan, in 1986 as a solution to the growing durability concerns of concrete by the Japanese government

  • The objective of this research is to carry out experiments and investigate fresh and hardened properties of SCC developed using a blend of ordinary Portland cement and ground granulated blast furnace slag (GGBFS), to evaluate the applicability of Japan Concrete Institute (JCI) model equations and to find out any similarities and differences between SelfCompacting concrete and normal vibrated concrete—Portland blast furnace slag concrete class B

  • It was established that Self-Compacting concrete at W/B of 32% with a 50% replacement of ground granulated blast furnace slag has better thermal cracking resistance than SCC with 30% GGBFS replacement

Read more

Summary

Introduction

The concept of Self-Compacting concrete was proposed by Professor Hajime Okamura of Kochi University of Technology, Japan, in 1986 as a solution to the growing durability concerns of concrete by the Japanese government. It is important to note that the required high amount of fines (powder) has a direct influence on the cost This can be mitigated by introducing supplementary cementitious materials as mineral admixtures. The main focus of this research is to produce powder type self-Compacting concrete using a blend of OPC and GGBFS. This will ensure that the amount of OPC used is reduced as compared to the use of OPC alone. Another objective of the research is to analyze thermal cracking resistance of the produced blended SCC so as to assess its suitability for use in mass concrete structures.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.