Abstract
Spermidine/spermine N1-acetyltransferase (SSAT) appears to be the rate-limiting enzyme of polyamine catabolism, yet studies of its regulation have been limited by the low amounts of SSAT in uninduced cells. A system for studying SSAT was established by stably transfecting Chinese hamster ovary cells with a construct where SSAT cDNA was under control of the cytomegalovirus promoter. Thirteen of 44 clones expressed significantly increased SSAT activity (650-1900 compared with 24 pmol/min/mg protein in control cells). SSAT activity was directly proportional to SSAT protein, which turned over very rapidly (t(1)/(2) of 29 min) and was degraded through the ubiquitin/proteasomal pathway. The increased SSAT activity caused perturbations in polyamine homeostasis and led to a reduction in the rate of growth under clonal conditions. N1,N12-bis(ethyl)spermine greatly increased SSAT activity in controls and SSAT transfected clones (to about 10 and 60 nmol/min/mg protein, respectively). N1, N12-Bis(ethyl)spermine caused an increase in the SSAT half-life and a slight increase in SSAT mRNA, but these changes were insufficient to account for the increase in SSAT protein suggesting that translational regulation of SSAT must also occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.