Abstract

Adsorption energies, Eads, of gaseous hydroxides of In, Tl, and the superheavy element Nh on surfaces of Teflon and gold are predicted using molecular and periodic relativistic DFT calculations. The ambition of the work is to assist related "one atom at a time" gas-phase chromatography experiments on the volatility of NhOH. The obtained low values of Eads(MOH), where M = In, Tl, Nh, on Teflon should guarantee easy transportation of the molecules through the Teflon capillaries from the accelerator to the chemistry setup. Straightforward band-structure DFT calculations using the revPBE-D3(BJ) functional have given an Eads(MOH) value of 161.4 kJ/mol on the Au(111) surface, being indicative of significant molecule-surface interaction. The MOH-gold surface binding is shown to take place via the oxygen atom of the hydroxide, with the oxygen-gold charge density transfer increasing from InOH to NhOH. The trend in Eads(MOH) is shown to be InOH < TlOH < NhOH, caused by increasing molecular dipole moments and decreasing stability of the hydroxides in this row. A trend in Eads of the atoms of these elements on gold is, however, opposite, In > Tl > Nh, caused by the increasing relativistic contraction and stabilization of the np1/2 AO with Z. These opposite trends in Eads(MOH) and Eads(M) in group 13 lead to almost equal Eads(Nh) and Eads(NhOH) values, making identification of Nh, as a type of species, difficult by measuring its adsorption enthalpy on gold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call