Abstract

Supplementary cementitious materials (SCMs) have been widely used to replace cement in recent years in order to reduce the burden of cement on the environment. In this study, fly ash (FA) and ground-granulated blast furnace slag (GGBFS) were used as long-term 40%, 50% and 60% replacement cement in order to explore the mechanical strength of different superplasticizers (SPs) under high substitution amounts. The results of the study showed that, in terms of the nature of work, when 60% of cement was replaced with SCM, the initial setting time was increased by 40–70 min. The values of the ratio of the initial to final setting time (I/F ratio) are equivalent when the I/F values of PCE and SNF are at W/B = 0.27 and 0.35, and at the lowest W/B (0.21) in this study, the I/F calculation result was the difference between PCE and MLS. The I/F value is equal, which means that when the W/B is low, PCE and MLS have the same impact on workability, and as W/B increases, the impact of PCE and SNF is similar. In terms of compressive strength, W/B = 0.21. The 1-day curing age of PCE was compared with the 91-day curing age, and it was found that at high volumes of replacement, increasing GGBFS by 10% can increase the strength by 37%. Using the ultrasonic wave velocity as the input value and the compressive strength result as the output value, the MATLAB back propagation neural network prediction model was carried out. The best correlation coefficient R value of MLS was 0.97, and the mean squared error was 2.21, which has good prediction ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.