Abstract

Laser surface remelting can be used to manipulate the microstructure of cast materials. Here, we present a detailed analysis of Fe2VAl following laser surface remelting. Within the melt pool, elongated grains grow nearly epitaxially from the heat-affected zone. These grains are separated by low-angle grain boundaries with 1°–5° misorientations. Segregation of vanadium, carbon, and nitrogen at grain boundaries and dislocations is observed using atom probe tomography. The local electrical resistivity was measured by an in-situ four-point-probe technique. A smaller increase in electrical resistivity is observed at these low-angle grain boundaries compared to high-angle grain boundaries in a cast sample. This indicates that grain boundary engineering could potentially be used to manipulate thermoelectric properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call