Abstract

Composites of Mg reinforced with 0.5, 1 and 2 vol.% of nanosized Y 2O 3 particles were fabricated using the disintegrated melt deposition technique. The nanocomposites were found to be thermally more stable than monolithic pure Mg and the tensile yield strength increased by 29% with the addition of 2 vol.% of Y 2O 3 nanoparticles. The yield strength improvement was attributed to (i) load-bearing effects due to the presence of nanosized reinforcements, (ii) generation of geometrically necessary dislocations to accommodate CTE mismatch between the matrix and the particles, (iii) Orowan strengthening, and (iv) the Hall–Petch effect due to grain size refinement. Basal slip and twinning were found to be the main deformation modes during extrusion, while non-basal slip was activated during tensile deformation at room temperature due to the alignment of basal planes along the tensile axis after extrusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call