Abstract
The properties of Al based nanocomposite metal foams and their corrosion behaviors were investigated in this study. For this, the composite metal foams with different relative densities (porosity) reinforced with alumina nanoparticles were prepared using a powder metallurgy- based sintering-dissolution process (SDP) and NaCl particles were used as space holders. Then, the effect of nanoparticle reinforcement and different amounts of NaCl space holders (corresponding porosity) on the microstructure, morphology, density, hardness, and electrochemical specifications of the samples were investigated. It was found that as the relative density increased from 60% to 70%, the wall thickness increased from about 200 to 300 μm, which led to a decrease in pore size. Also, the addition of nanoparticle reinforcement and the increased relative density result in increasing metal foam hardness. Moreover, electrochemical test results indicated that increasing the Al2O3 content reduced the corrosion rate, but increasing the porosity enhanced it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Minerals, Metallurgy, and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.