Abstract

Xylan 1,4-beta-D-xylosidase catalyzes hydrolysis of non-reducing end xylose residues from xylooligosaccharides. The enzyme is currently used in combination with beta-xylanases in several large-scale processes for improving baking properties of bread dough, improving digestibility of animal feed, production of D-xylose for xylitol manufacture, and deinking of recycled paper. On a grander scale, the enzyme could find employment alongside cellulases and other hemicellulases in hydrolyzing lignocellulosic biomass so that reaction product monosaccharides can be fermented to biofuels such as ethanol and butanol. Catalytically efficient enzyme, performing under saccharification reactor conditions, is critical to the feasibility of enzymatic saccharification processes. This is particularly important for beta-xylosidase which would catalyze breakage of more glycosidic bonds of hemicellulose than any other hemicellulase. In this paper, we review applications and properties of the enzyme with emphasis on the catalytically efficient beta-D-xylosidase from Selenomonas ruminantium and its potential use in saccharification of lignocellulosic biomass for producing biofuels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call