Abstract

AbstractThe dissolution in 1 M HC1 of Al-, Mn-, and Ni-substituted hematites and the influence of metal substitution on dissolution rate and kinetics of dissolution were investigated. The inhomogeneous dissolution of most of the hematites investigated was well described by the Avrami-Erofe'ev rate equation, kt = √[-ln(l − α)], where k is the dissolution rate in time, t, and α is the Fe dissolved. Dissolution of Al-substituted hematite occurred mostly by edge attack and hole formation normal to (001), with the rate of dissolution, k, directly related to surface area (SA). Dissolution of rhombohedral Mn- and Ni-bearing hematites occurred at domain boundaries, crystal edges, and corners with k unrelated to SA. The morphology of Mn- and Ni-substituted hematites changed during dissolution with clover-leaf-like forms developing as dissolution proceeded, whereas the original plate-like morphology of Al-bearing hematite was generally retained. Acid attack of platy and rhomboidal hematite is influenced by the direct (e.g., metaloxygen bond energy, hematite crystallinity) and indirect (e.g., crystal size and shape) affects associated with incorporation of foreign ions within hematite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.