Abstract
Let G be a real algebraic group, H ≤ G an algebraic subgroup containing a maximal reductive subgroup of G, and Γ a subgroup of G acting on G/H by left translations. We conjecture that Γ is virtually solvable provided its action on G/H is properly discontinuous and ΓG/H is compact, and we confirm this conjecture when G does not contain simple algebraic subgroups of rank ≥2. If the action of Γ on G/H (which is isomorphic to an affine linear space A n ) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for n ≤ 5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.