Abstract
BackgroundTranscriptional regulation of gene expression in eukaryotes is usually accomplished by cooperative transcription factors (TFs). Computational identification of cooperative TF pairs has become a hot research topic and many algorithms have been proposed in the literature. A typical algorithm for predicting cooperative TF pairs has two steps. (Step 1) Define the targets of each TF under study. (Step 2) Design a measure for calculating the cooperativity of a TF pair based on the targets of these two TFs. While different algorithms have distinct sophisticated cooperativity measures, the targets of a TF are usually defined using ChIP-chip data. However, there is an inherent weakness in using ChIP-chip data to define the targets of a TF. ChIP-chip analysis can only identify the binding targets of a TF but it cannot distinguish the true regulatory from the binding but non-regulatory targets of a TF.ResultsThis work is the first study which aims to investigate whether the performance of computational identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the targets of a TF. For this purpose, we propose four simple algorithms, all of which consist of two steps. (Step 1) Define the targets of a TF using (i) ChIP-chip data in the first algorithm, (ii) TF binding data in the second algorithm, (iii) TF perturbation data in the third algorithm, and (iv) the intersection of TF binding and TF perturbation data in the fourth algorithm. Compared with the first three algorithms, the fourth algorithm uses a more biologically relevant way to define the targets of a TF. (Step 2) Measure the cooperativity of a TF pair by the statistical significance of the overlap of the targets of these two TFs using the hypergeometric test. By adopting four existing performance indices, we show that the fourth proposed algorithm (PA4) significantly out performs the other three proposed algorithms. This suggests that the computational identification of cooperative TF pairs is indeed improved when using a more biologically relevant way to define the targets of a TF. Strikingly, the prediction results of our simple PA4 are more biologically meaningful than those of the 12 existing sophisticated algorithms in the literature, all of which used ChIP-chip data to define the targets of a TF. This suggests that properly defining the targets of a TF may be more important than designing sophisticated cooperativity measures. In addition, our PA4 has the power to predict several experimentally validated cooperative TF pairs, which have not been successfully predicted by any existing algorithms in the literature.ConclusionsThis study shows that the performance of computational identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the targets of a TF. The main contribution of this study is not to propose another new algorithm but to provide a new thinking for the research of computational identification of cooperative TF pairs. Researchers should put more effort on properly defining the targets of a TF (i.e. Step 1) rather than totally focus on designing sophisticated cooperativity measures (i.e. Step 2). The lists of TF target genes, the Matlab codes and the prediction results of the four proposed algorithms could be downloaded from our companion website http://cosbi3.ee.ncku.edu.tw/TFI/
Highlights
Transcriptional regulation of gene expression in eukaryotes is usually accomplished by cooperative transcription factors (TFs)
This work is the first study which aims to investigate whether the performance of computational identification of cooperative TF pairs in yeast could be improved by using a more biologically relevant way to define the targets of a TF
The performance of computational identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the targets of a TF In this study, the four proposed algorithms use different ways to define the targets of a TF
Summary
Transcriptional regulation of gene expression in eukaryotes is usually accomplished by cooperative transcription factors (TFs). (Step 2) Design a measure for calculating the cooperativity of a TF pair based on the targets of these two TFs. While different algorithms have distinct sophisticated cooperativity measures, the targets of a TF are usually defined using ChIP-chip data. Many algorithms have been developed to identify cooperative TF pairs in yeast by integrating multiple highthroughput data sources such as gene expression data, ChIP-chip data, protein-protein interaction data, promoter sequence data, etc. The first step is to define the targets of each TF under study and the second step is to design a measure for calculating the cooperativity of a TF pair based on the targets of these two TFs. While different algorithms propose distinct sophisticated cooperativity measures, the targets of a TF are usually defined using ChIP-chip data. ChIP-chip analysis can only identify the binding targets of a TF but it cannot distinguish the true regulatory from the binding but non-regulatory targets of a TF [17]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.