Abstract

AbstractWe consider a canonical Ramsey type problem. An edge‐coloring of a graph is called m‐good if each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let f(m, G) denote the smallest n such that every m‐good edge‐coloring of Kn yields a properly edge‐colored copy of G, and let g(m, G) denote the smallest n such that every m‐good edge‐coloring of Kn yields a rainbow copy of G. We give bounds on f(m, G) and g(m, G). For complete graphs G = Kt, we have c1mt2/ln t ≤ f(m, Kt) ≤ c2mt2, and cmt3/ln t ≤ g(m, Kt) ≤ cmt3/ln t, where c1, c2, c, c are absolute constants. We also give bounds on f(m, G) and g(m, G) for general graphs G in terms of degrees in G. In particular, we show that for fixed m and d, and all sufficiently large n compared to m and d, f(m, G) = n for all graphs G with n vertices and maximum degree at most d. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 2003

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.