Abstract

“Time” has different meanings in classical general relativity and in quantum theory. While all choices of a time function yield the same local classical geometries, quantum theories built on different time functions are not unitarily equivalent. This incompatibility is most vivid in model systems for which exact quantum descriptions in different time variables are available. One such system is a spherically symmetric, thin dust shell. In this paper, we will compare the quantum theories of the shell built on proper time and on a particular coordinate time. We find wholly incompatible descriptions: whereas the shell quantum mechanics in coordinate time admits no solutions when the mass is greater than the Planck mass, its proper time quantum mechanics only admits solutions when the mass is greater than the Planck mass. The latter is in better agreement with what is expected from observation. We argue that proper time quantization provides a superior approach to the problem of time in canonical quantization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.