Abstract

In this article, we present proper quantization rule, ∫k(x) dx - ∫k0(x) dx = nπ, where and study solvable potentials. We find that the energy spectra of solvable systems can be calculated only from its ground state obtained by the Sturm-Liouville theorem. The previous complicated and tedious integral calculations involved in exact quantization rule are greatly simplified. The beauty and simplicity of proper quantization rule come from its meaning – whenever the number of the nodes of the logarithmic derivative ϕ(x) = ψ(x)-1dψ(x) /dx or the number of the nodes of the wave function ψ(x) increases by one, the momentum integral will increase by π. We apply two different quantization rules to carry out a few typically solvable quantum systems such as the one-dimensional harmonic oscillator, the Morse potential and its generalization as well as the asymmetrical trigonometric Scarf potential and show a great advantage of the proper quantization rule over the original exact quantization rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.