Abstract
Calculation process of some reservoir engineering problems involves several passes of full-order numerical reservoir simulations, and this makes it a time-consuming process. In this study, a fast method based on proper orthogonal decomposition (POD) was developed to predict flow and heat transfer of oil and water in a reservoir. The reduced order model for flow and heat transfer of oil and water in the hot water-drive reservoir was generated. Then, POD was used to extract a reduced set of POD basis functions from a series of "snapshots" obtained by a finite difference method (FDM), and these POD basis functions most efficiently represent the dynamic characteristics of the original physical system. After injection and production parameters are changed constantly, the POD basis functions combined with the reduced order model were used to predict the new physical fields. The POD-based method was approved on a two-dimensional hot water-drive reservoir model. For the example of this paper, compared with FDM, the prediction error of water saturation and temperature fields were less than 1.3% and 1.5%, respectively; what is more, it was quite fast, where the increase in calculation speed was more than 70 times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.