Abstract

ABSTRACTIn this article we present in detail the methodology and the first results of a ground-based program to determine the absolute proper motion of the Fornax dwarf spheroidal galaxy. The proper motion was determined using bona fide Fornax star members measured with respect to a fiducial at-rest background spectroscopically confirmed quasar, QSO J0240-3434B. Our homogeneous measurements, based on this one quasar gives a value of (μα cos δ,μδ) = (0.64 ± 0.08,-0.01 ± 0.11) mas yr-1. There are only two other (astrometric) determinations for the transverse motion of Fornax: one based on a combination of plates and HST data, and another (of higher internal precision) based on HST data. We show that our proper motion errors are similar to those derived from HST measurements on individual QSOs. We provide evidence that, as far as we can determine it, our motion is not affected by magnitude, color, or other potential systematic effects. Last epoch measurements and reductions are underway for other four quasar fields of this galaxy, which, when combined, should yield proper motions with a weighted mean error of ∼50 μas yr-1, allowing us to place important constraints on the orbit of Fornax.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.