Abstract
The mathematical equivalence between linear scalarizations in multiobjective programming and expected-value functions in stochastic optimization suggests to investigate and establish further conceptual analogies between these two areas. In this paper, we focus on the notion of proper efficiency that allows us to provide a first comprehensive analysis of solution and scenario tradeoffs in stochastic optimization. In generalization of two standard characterizations of properly efficient solutions using weighted sums and augmented weighted Tchebycheff norms for finitely many criteria, we show that these results are generally false for infinitely many criteria. In particular, these observations motivate a slightly modified definition to prove that expected-value optimization over continuous random variables still yields bounded tradeoffs almost everywhere in general. Further consequences and practical implications of these results for decision-making under uncertainty and its related theory and methodology of multiple criteria, stochastic and robust optimization are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.