Abstract
This paper is concerned mainly with the structure of inverse semigroups which have a partial ordering defined on them in addition to their natural partial ordering. However, we include some results on partially ordered semigroups which are of interest in themselves. Some recent information [1, 2, 6, 7,11] has been obtained about the algebraic structure of partially ordered semigroups, and we add here to the list by showing in Section 1 that every regular integrally closed semigroup is an inverse semigroup. In fact it is a proper inverse semigroup [10], that is, one in which the idempotents form a complete class modulo the minimum group congruence, and the structure of these semigroups is explicitly known [5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.