Abstract

Cyclin-dependent kinases (CDK) and their compulsory cofactors, the cyclins, are the two key classes of regulatory molecules that determine the eukaryotic cell's progress through the cell cycle by substrate phosphorylation. Cdk1 forms complexes with B-type cyclins and phosphorylates a number of substrates as cells prepare to enter mitosis. CYB-3 (Cyclin B3) is a B-type cyclin that has been recently shown to be required for the timely metaphase-to-anaphase transition, presumably by alleviating a spindle assembly checkpoint (SAC) block. Previously, we have shown that doubling the CYB-3 dosage suppresses sterility in the absence of the essential SAC component MDF-1/Mad1. Here we demonstrate the importance of the Mos1-mediated single-copy insertion method for understanding the effects of gene dosage by generating strains that have more (two or three) copies of the cyb-3 in wild-type and mdf-1(gk2) backgrounds to investigate dosage effect of CYB-3 on mitotic progression as well as development and fertility in the absence and the presence of the MDF-1 checkpoint component. We show that tripling the dosage of CYB-3 results in a significantly variable metaphase-to-anaphase transition, both in wild-type and mdf-1(gk2) mutant backgrounds. Although a majority of embryos initiate anaphase onset normally, a significant number of embryos initiate anaphase with a delay. We also show that tripling the dosage of CYB-3 has no effect on viability in the wild-type background; however, it does reduce the sterility caused by the absence of MDF-1. Together, these data reveal that proper dosage of CYB-3 is important for precision of timely execution of anaphase onset regardless of the presence of the MDF-1 checkpoint component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call