Abstract
An path that is edge-colored is called proper if no two consecutive edges receive the same color. A general graph that is edge-colored is called properly connected if, for every pair of vertices in the graph, there exists a properly colored path from one to the other. Given two vertices u and v in a properly connected graph G, the proper distance is the length of the shortest properly colored path from u to v. By considering a specific class of colorings that are properly connected for Cartesian products of complete and cyclic graphs, we present results on the proper distance between all pairs of vertices in the graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.