Abstract

We explicitly classify all pairs (M, G), where M is a connected complex manifold of dimension n≥2 and G is a connected Lie group acting properly and effectively on M by holomorphic transformations and having dimension dG satisfying n2+2≤dG<n2+2n. These results extend—in the complex case—the classical description of manifolds admitting proper actions of groups of sufficiently high dimensions. They also generalize some of the author’s earlier work on Kobayashi-hyperbolic manifolds with high-dimensional holomorphic automorphism group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.