Abstract
ObjectiveSimulation studies suggest that the ratio of the number of events to the number of estimated parameters in a logistic regression model should be not less than 10 or 20 to 1 to achieve reliable effect estimates. Applications of propensity score approaches for confounding control in practice, however, do often not consider these recommendations. Study Design and SettingWe conducted extensive Monte Carlo and plasmode simulation studies to investigate the impact of propensity score model overfitting on the performance in estimating conditional and marginal odds ratios using different established propensity score inference approaches. We assessed estimate accuracy and precision as well as associated type I error and type II error rates in testing the null hypothesis of no exposure effect. ResultsFor all inference approaches considered, our simulation study revealed considerably inflated standard errors of effect estimates when using overfitted propensity score models. Overfitting did not considerably affect type I error rates for most inference approaches. However, because of residual confounding, estimation performance and type I error probabilities were unsatisfactory when using propensity score quintile adjustment. ConclusionOverfitting of propensity score models should be avoided to obtain reliable estimates of treatment or exposure effects in individual studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.