Abstract

Matching and stratification based on confounding factors or propensity scores (PS) are powerful approaches for reducing confounding bias in indirect treatment comparisons. However, implementing these approaches requires pooled individual patient data (IPD). The research presented here was motivated by an indirect comparison between a single-armed trial in acute myeloid leukemia (AML), and two external AML registries with current treatments for a control. For confidentiality reasons, IPD cannot be pooled. Common approaches to adjusting confounding bias, such as PS matching or stratification, cannot be applied as 1) a model for PS, for example, a logistic model, cannot be fitted without pooling covariate data; 2) pooling response data may be necessary for some statistical inference (e.g., estimating the SE of mean difference of matched pairs) after PS matching. We propose a set of approaches that do not require pooling IPD, using a combination of methods including a linear discriminant for matching and stratification, and secure multiparty computation for estimation of within-pair sample variance and for calculations involving multiple control sources. The approaches only need to share aggregated data offline, rather than real-time secure data transfer, as required by typical secure multiparty computation for model fitting. For survival analysis, we propose an approach using restricted mean survival time. A simulation study was conducted to evaluate this approach in several scenarios, in particular, with a mixture of continuous and binary covariates. The results confirmed the robustness and efficiency of the proposed approach. A real data example is also provided for illustration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.