Abstract

A finite element displacement model was utilized to predict the elastic behavior of a propeller blade having an arbitrary shape and subjected to prescribed loading. Solid elements in their general form were adapted. The use of curvilinear coordinates in element space provides a practical means for defining complex design surfaces and also provides an expedient method for stress calculations . The curved three-dimensional elements fit readily to a skewed geometry of curved boundary and their application to propeller problems is simple and straight-forward. The performance of the curved solid finite elements has been found to be excellent and the computed results, because of the general nature of the solid elements are assured to converge to the true solution . The high degree of accuracy obtained from a recent analysis of a full size propeller strongly suggests that the current development represents a realistic and reliable approach to the general solution of the propeller stress problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.