Abstract

We present results of axisymmetric magnetohydrodynamic simulations of the interaction of a rapidly rotating, magnetized star with an accretion disk. The disk is considered to have a finite viscosity and magnetic diffusivity. The main parameters of the system are the star’s angular velocity and magnetic moment, and the disk’s viscosity and diffusivity. We focus on the “propeller” regime where the inner radius of the disk is larger than the corotation radius. Two types of magnetohydrodynamic flows have been found as a result of simulations: “weak” and “strong” propellers. The strong propellers are characterized by a powerful disk wind and a collimated magnetically dominated outflow or jet from the star. The weak propellers have only weak outflows. We investigated the time-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from the disk, and the jet. Rates of exchange of mass and angular momentum between the elements of the system are derived as a function of the main parameters. The propeller mechanism may be responsible for the fast spinningdown of the classical T Tauri stars in the initial stages of their evolution, and for the spinning-down of accreting millisecond pulsars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call