Abstract

In adverse situations, such as maneuvering and motion in waves, severe variations of the propeller inflow may be experienced, resulting in an increase of propeller thrust and torque and in the generation of in-plane loads. This may cause undesired hull-vibratory loads, stress of the propulsive system and even affect somehow the ship dynamic response. Thus, a reliable prediction of these phenomena during design phases is necessary to comply with the increasingly stringent constraints on safety at sea, propulsive efficiency, vibration and noise pollution. In the present work, the capabilities of a propeller solver based on a potential, boundary element method, routinely used in the optimization process of the propulsive device, to analyze the propeller performance under different maneuvering conditions are considered. After a first validation against uRANS simulations considering a simple oblique flow, the analysis is broadened to a propeller operating in the wake field of a twin screw ship in different maneuvering conditions, for which experimental results from free running tests in model scale are available. The BEM solver is compared also to a steady blade element approach in order to achieve an overview of the respective pros and cons in view of their inclusion in CFD simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.