Abstract

In this work we describe the development of a propellant-based, portable oral inhalation platform for the pulmonary delivery of genes. A core–shell strategy is utilized to efficiently disperse cationic-polymer-DNA nanoparticles in hydrofluoroalkane propellants, and to generate aerosols from the corresponding pressurized metered-dose inhaler formulations (pMDIs) that have excellent aerosol characteristics, suitable for deep lung deposition. The engineered polyplexes and core–shell structures were fully characterized, and their ability to transfect model lung alveolar epithelium cells in vitro was demonstrated. We also show that the propellant does not affect the biological activity of the plasmid DNA, and that the core–shell formulations have no in vitro cytotoxicity. The relevance of this work stems from the fact that pMDIs are the least expensive and most widely used portable oral inhalation devices, and are thus promising platforms for targeting genes to the lungs for the treatment of medically relevant diseases including asthma, cystic fibrosis, chronic obstructive pulmonary disease, and lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.