Abstract

Abstract Bulk ZrO2 is a highly active and selective catalyst for dehydrogenation of propane (PDH), in which coordinatively unsaturated Zr cations (Zrcus4+) serve as active sites. Substitution of dopant ions into Zr lattice can improve its catalytic activity by generating more Zrcus4+ sites. In this work, a series of vanadium-doped ZrO2 metal oxides (VZrO-x) have been prepared and the influences of vanadium content on their properties have been systematically investigated. Various characterization techniques showed that an appropriate amount of vanadium dopant helps more Zrcus4+ sites to be created by a structural transformation and H2 pretreatment. However, excess vanadium dopant led to a negative effect on the catalytic activity owing to the formation of bulk-like V2O5 crystallites. The catalytic activity of VZrO-x is well correlated with the amount of Lewis acid sites because Zrcus4+ cations correspond to Lewis acid sites. The VZrO-8 catalyst exhibited two times higher activity than pure ZrO2. Moreover, for repeated cycles the activity was totally recovered by oxidative regeneration followed by reductive pretreatment. Finally, the performance test results showed that H2 co-feeding can further enhance the activity by suppressing coke deposition during PDH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call