Abstract

AbstractAchieving selective CH bond cleavage is critical for developing catalytic processes that transform small alkanes to value‐added products. The present study clarifies the molecular‐level origin for an exceptionally strong preference for propane to dissociate on the crystalline PdO(101) surface via primary CH bond cleavage. Using reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations, we show that adsorbed propane σ‐complexes preferentially adopt geometries on PdO(101) in which only primary CH bonds datively interact with the surface Pd atoms at low propane coverages and are thus activated under typical catalytic reaction conditions. We show that a propane molecule achieves maximum stability on PdO(101) by adopting a bidentate geometry in which a HPd dative bond forms at each CH3 group. These results demonstrate that structural registry between the molecule and surface can strongly influence the selectivity of a metal oxide surface in activating alkane CH bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.