Abstract
The general formalism of the free Dirac fermions on spatially flat (1[Formula: see text]+[Formula: see text]3)-dimensional Friedmann-Lemaître–Robertson–Walker (FLRW) space–times is developed in momentum representation. The mode expansions in terms of the fundamental spinors satisfying the charge conjugation and normalization conditions are used for deriving the structure of the anticommutator matrix-functions and, implicitly, of the retarded, advanced, and Feynman fermion propagators. The principal result is that the new type of integral representation we proposed recently in the de Sitter case can be applied to the Dirac fermions in any spatially flat FLRW geometry. Moreover, the Dirac equation of the left-handed massless fermions can be analytically solved finding a general spinor solution and deriving the integral representations of the neutrino propagators. It is shown that in the Minkowski flat space–time our new integral representation is up to a change of variable just like the usual Fourier representation of the fermion propagators. The form of the Feynman propagator of the massive fermions on a spatially flat FLRW space–time with a scale factor of Milne-type is also outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.