Abstract

Starting from a formulation of Correlated Worldline (CWL) theory in terms of functional integrals over paths, we define propagators for particles and matter fields in this theory. We show that the most natural formulation of CWL theory involves a rescaling of the generating functional for the theory; correlation functions then simplify, and all loops containing gravitons disappear from perturbative expansions. The spacetime metric obeys the Einstein equation, sourced by all of the interacting CWL paths. The matter paths are correlated by gravitation, thereby violating quantum mechanics for large masses. We derive exact results for the generating functional and the matter propagator, and for linearized weak field theory. For the example of a two-path experiment, we derive the CWL matter propagator, and show how the results compare with conventional quantum theory and with semiclassical gravity. We also exhibit the structure of low-order perturbation theory for the CWL matter propagator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.