Abstract

A thorough study of 4-dimensional SU(2) Yang-Mills theory in Coulomb gauge is performed using large scale lattice simulations. The (equal-time) transverse gluon propagator, the ghost form factor d(p) and the Coulomb potential V_{coul} (p) ~ d^2(p) f(p)/p^2 are calculated. For large momenta p, the gluon propagator decreases like 1/p^{1+\eta} with \eta =0.5(1). At low momentum, the propagator is weakly momentum dependent. The small momentum behavior of the Coulomb potential is consistent with linear confinement. We find that the inequality \sigma_{coul} \ge \sigma comes close to be saturated. Finally, we provide evidence that the ghost form factor d(p) and f(p) acquire IR singularities, i.e., d(p) \propto 1/\sqrt{p} and f(p) \propto 1/p, respectively. It turns out that the combination g_0^2 d_0(p) of the bare gauge coupling g_0 and the bare ghost form factor d_0(p) is finite and therefore renormalization group invariant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.