Abstract

Coulomb gauge Yang-Mills theory within the first order formalism is considered with a view of deriving the propagator Dyson-Schwinger equations. The first order formalism is studied with special emphasis on the Becchi-Rouet-Stora (BRS) invariance and it is found that there exists two forms of invariance---invariance under the standard BRS transform and under a second, nonstandard transform. The field equations of motion and symmetries are derived explicitly and certain exact relations that simplify the formalism are presented. It is shown that the Ward-Takahashi identity arising from invariance under the nonstandard part of the BRS transform is guaranteed by the functional equations of motion. The Feynman rules and the general decomposition of the two-point Green's functions are derived. The propagator Dyson-Schwinger equations are derived and certain aspects (energy independence of ghost Green's functions and the cancellation of energy divergences) are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call