Abstract

We present strong evidence of Landau states formation in multiwalled carbon nanotubes with metallic or semiconducting outer shells, under magnetic fields as high as 60 T. Magnetoconductance data are found to converge to a gate-independent value for semiconducting shells, whereas for metallic shells, the Landau states introduce a strong reintroduction of backscattering and Fermi level pinning close to the charge neutrality point. Electronic band structure and transport calculations provide a consistent interpretation of the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call