Abstract

The propagation law of stress wave in larch (Larix gmelinii) wood was studied in this work. External factors affecting the propagation velocity of stress wave in wood cross-section were studied using the orthogonal experiment method. The most influential factors were shown by the experimental results, and the parameters of the propagation velocity model of stress wave in larch wood were optimized. Based on the optimized propagation velocity model, combined with the traditional defect determination method, a twelve-directional stack imaging (TDSI) steps system was developed for larch wood internal defect detection. The analysis results showed that of the three external factors of temperature, moisture content, and illumination duration, temperature had the greatest influence on the propagation velocity model of stress wave in larch wood cross-section. Using TDSI to image the defective larch wood not only can locate the defective area, but also it can achieve a high imaging precision of 95.52%, and the imaging precision is unrelated to the location of the defect, which has a good quantitative defect detection effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.