Abstract
SummaryRooting and growth responses of miniature rose cuttings were investigated in an experiment in which four propagation temperatures, two photosynthetic photon flux densities (PPFDs) with five auxin (IBA) concentrations, cutting sizes and cutting positions, were combined factorially in a response-surface design. Most prominently, temperature, cutting size and auxin and their interactions, influenced root and shoot growth. A propagation temperature of 24.6°C, and IBA concentrations between 10–3 and 10–1M, depending on temperature, were optimal for root formation. Root formation in extra short cuttings was delayed at low IBA concentrations. Regarding root formation, IBA could substitute for increased temperature as well as for increased cutting size. Onset of axillary bud growth was fastest at 24.6°C, and delayed in extra short cuttings. Application of IBA at 10–4 to 10–3M was optimal for axillary bud growth. By increasing the IBA concentration both time to flowering and plant height increased at 24.6°C. In cuttings from higher positions on stock plants, axillary shoots enhanced their growth to flowering, became shorter, and weighed less, suggesting occurrence of positional effects (topophysis). The growth rate increased with increasing IBA concentration, as well as from medial to low positioned cuttings. Increasing propagation PPFD from 46 to 72 µmol m–2s–1 did not affect the parameters. Time to axillary bud growth and time to first flower were related to time-to-visible root. Fast formation of roots apparently resulted in fast axillary bud growth. In time-to-visible root and axillary bud growth, the smallest variation between plants was found at optimal ranges for temperature, IBA concentration and cutting size, and further factors optimal for root formation and axillary bud growth provided the most synchronized plant development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Horticultural Science and Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.