Abstract

Based on the extended Huygens–Fresnel diffraction integral, the analytical expression of the average intensity for a vortex cosine hyperbolic-Gaussian beam (vChGB) propagating in oceanic turbulence is derived in detail. From the derived formula, the propagation properties of a vChGB in oceanic turbulence, including the average intensity distribution and the beam spreading, are discussed with numerical examples. It is shown that oceanic turbulence influences strongly the propagation properties of the beam. The vChGB may propagate within shorter distance in weak oceanic turbulence by increasing the dissipation rate of mean-square temperature and the ratio of temperature to salinity fluctuation or by increasing the dissipation rate of turbulent kinetic energy per unit mass of sea water. Meanwhile, the evolution properties of the vChGB in the oceanic turbulence are affected by the initial beam parameters, namely the decentered parameter b, the topological charge M, the beam waist width ω0 and the wavelength λ. The obtained results can be beneficial for applications in optical underwater communication and remote sensing domain, imaging, and so on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call