Abstract
ABSTRACTBased on the extended Huygens–Fresnel principle and the second-order moments of the Wigner distribution function (WDF), the analytical expressions for the cross-spectral density (CSD) and the propagation factor of a rectangular Laguerre–Gaussian-correlated Schell-model (LGCSM) beam propagating in atmospheric turbulence are derived. The statistical properties, such as the average intensity, the spectral degree of coherence (SDOC) and the propagation factor, of a rectangular LGCSM beam in free space and atmospheric turbulence are comparatively analysed. It is illustrated that a rectangular LGCSM beam exhibits self-splitting and combing properties on propagation in atmospheric turbulence, and the self-splitting properties of such beam are closely related to its beam orders m and n, which is quite different from other self-splitting beams. In addition, the rectangular LGCSM beam has an advantage for reducing the turbulence-induced degradation compared with the conventional partially coherent beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.