Abstract

By utilizing the extended Huygens-Fresnel principle, we derive the analytical formulas for the cross-spectral density matrix elements of a radially polarized multi-Gaussian Schell-model (RPMGSM) beam propagating in oceanic turbulence. Effects of beam parameters and oceanic turbulence parameters on the propagation properties of RPMGSM beams are investigated in detail by numerical simulation. Our results show that the RPMGSM beam with larger beam order M has an advantage over the radially polarized Gaussian Schell-model beam for reducing turbulence-induced degradation. Compared with temperature-induced turbulence fluctuation, the salinity-induced turbulence fluctuation makes a greater contribution to the influence on propagation properties of RPMGSM beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.